返回顶部

Python 中较快的循环方式

[复制链接]
CoisiniLv.9 显示全部楼层 发表于 2022-7-6 16:26:47 |阅读模式 打印 上一主题 下一主题

  今天我们来研究一下 Python 中较快的循环方式。

  比如说有一个简单的任务,就是从 1 累加到 1 亿,我们至少可以有 7 种方法来实现,列举如下:

  1、while 循环

[Python] 纯文本查看 复制代码
def while_loop(n=100_000_000):
    i = 0
    s = 0
    while i < n:
        s += i
        i += 1
    return s


  2、for 循环

[Python] 纯文本查看 复制代码
def for_loop(n=100_000_000):
    s = 0
    for i in range(n):
        s += i
    return s


  3、sum range

[Python] 纯文本查看 复制代码
def sum_range(n=100_000_000):
    return sum(range(n))


  4、sum generator(生成器)

[Python] 纯文本查看 复制代码
def sum_generator(n=100_000_000):
    return sum(i for i in range(n))


  5、sum list comprehension(列表推导式)

[Python] 纯文本查看 复制代码
def sum_list_comp(n=100_000_000):
    return sum([i for i in range(n)])


  6、sum numpy

[Python] 纯文本查看 复制代码
import numpy
def sum_numpy(n=100_000_000):
    return numpy.sum(numpy.arange(n, dtype=numpy.int64))


  7、sum numpy python range

[Python] 纯文本查看 复制代码
import numpy
def sum_numpy_python_range(n=100_000_000):
    return numpy.sum(range(n))


  上述 7 种方法得到的结果是一样的,但是消耗的时间却各不相同,你可以猜测一下哪一个方法快,然后看下面代码的执行结果:

[Python] 纯文本查看 复制代码
import timeit

def main():
    l_align = 25
    print(f'{"1、while 循环":<{l_align}} {timeit.timeit(while_loop, number=1):.6f}')
    print(f"{'2、for 循环':<{l_align}}  {timeit.timeit(for_loop, number=1):.6f}")
    print(f'{"3、sum range":<{l_align}} {timeit.timeit(sum_range, number=1):.6f}')
    print(f'{"4、sum generator":<{l_align}} {timeit.timeit(sum_generator, number=1):.6f}')
    print(f'{"5、sum list comprehension":<{l_align}} {timeit.timeit(sum_list_comp, number=1):.6f}')
    print(f'{"6、sum numpy":<{l_align}} {timeit.timeit(sum_numpy, number=1):.6f}')
    print(f'{"7、sum numpy python range":<{l_align}} {timeit.timeit(sum_numpy_python_range, number=1):.6f}')

if __name__ == '__main__':
    main()


  执行结果如下所示:


(图片来源:公众号-Python七号)


  比较快的方式

  for 比 while 块

  for 和 while 本质上在做相同的事情,但是 while 是纯 Python 代码,而 for 是调用了 C 扩展来对变量进行递增和边界检查,我们知道 CPython 解释器就是 C 语言编写的,Python 代码要比 C 代码慢,而 for 循环代表 C,while 循环代表 Python,因此 for 比 while 快。

  numpy 内置的 sum 要比 Python 的 sum 快

  numpy 主要是用 C 编写的,相同的功能,肯定是 numpy 的快,类似的,numpy 的 arange 肯定比 Python 的 range 快。

  交叉使用会更慢

  numpy 的 sum 与 Python 的 range 结合使用,结果耗时最长,见方法 7。最好是都使用 numpy 包来完成任务,像方法 6。

  生成器比列表推导式更快

  生成器是惰性的,不会一下子生成 1 亿个数字,而列表推导式会一下子申请全部的数字,内存占有较高不说,还不能有效地利用缓存,因此性能稍差。

【免责声明】本文系转载,文章来源于公众号-Python七号 ,作者somenzz。转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与联系我们,我们会予以更改或删除相关文章,以保证您的权益!

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
回复

使用道具 举报

精彩评论1

adminLv.9 显示全部楼层 发表于 2022-7-7 13:46:22
清晰明了
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

达内教育:成立于2002年。致力于面向IT互联网行业,培养软件开发工程师、测试工程师、系统管理员、智能硬件工程师、UI设计师、网络营销、会计等职场人才 达内使命:缔造年轻人的中国梦、缔造达内员工的中国梦 达内愿景:做管理一流的教育公司
  • 商务合作

  • Powered by Discuz! X3.4 | Copyright © 2002-2024, 达内教育 Tedu.cn
  • 京ICP备08000853号-56 |网站地图